Novel highly stable conductive polymer composite PEDOT:DBSA for bioelectronic applications

نویسندگان

چکیده

Abstract In this work, a novel conductive polymer composite consisting of poly(3,4-ethylenedioxythiophene) doped with dodecylbenzenesulfonic acid (PEDOT:DBSA) for bioelectronic applications was prepared and optimized. The PEDOT:DBSA possesses superior biocompatibility toward cell culture electrical characteristics comparable to the widely used PEDOT:PSS. cross-linking processes induced by cross-linker glycidoxypropyltrimethoxysilane (GOPS), which investigated in detail using Fourier transform Raman spectroscopy XPS analysis, lead excellent long-term stability thin films aqueous solutions, even without treatment at high temperature. respect level were studied detail. conductivity significantly improved sulfuric posttreatment. A model transistor device based on shows typical behavior suitable properties or those available polymers bioelectronics, such as Based these properties, newly developed material is well suited that require contact living organisms, wearable implantable bioelectronics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conductive polymer-based sensors for biomedical applications.

A class of organic polymers, known as conducting polymers (CPs), has become increasingly popular due to its unique electrical and optical properties. Material characteristics of CPs are similar to those of some metals and inorganic semiconductors, while retaining polymer properties such as flexibility, and ease of processing and synthesis, generally associated with conventional polymers. Owing ...

متن کامل

A highly stretchable, transparent, and conductive polymer

Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting pol...

متن کامل

Liquid-phase metal inclusions for a conductive polymer composite.

dielectric elastomer actuators, [ 17 ] and memristors. [ 18 ] Liquidphase gallium–indium alloys are popular for this “microfl uidics” approach to stretchable electronics since they are nontoxic and form an oxide layer [ 19–22 ] that aids in microcontact printing, [ 23 ] electrode alignment, [ 24 ] and 3D printing. [ 25 ] Finally, a common approach to stretchable electronics is to embed thin fi ...

متن کامل

Interfacing nanomaterials for bioelectronic applications

The integration of nanomaterials as a bridge between the biological and electronic worlds has revolutionised understanding of how to generate functional bioelectronic devices and has opened up new horizons for the future of bioelectronics. The use of nanomaterials as a versatile interface in the area of bioelectronics offers many practical solutions and has recently emerged as a highly promisin...

متن کامل

Modeling and Data Analysis of Conductive Polymer Composite Sensors

MODELING AND DATA ANALYSIS OF CONDUCTIVE POLYMER COMPOSITE SENSORS Hua Lei Department of Chemical Engineering Doctor of Philosophy Conductive polymer composite sensors have shown great potential in identifying gaseous analytes. To more thoroughly understand the physical and chemical mechanism of this type of sensors, a model was developed by combining two sub-models: a conductivity model and a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Polymer Journal

سال: 2023

ISSN: ['0032-3896', '1349-0540']

DOI: https://doi.org/10.1038/s41428-023-00784-7